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Abstract

The theoretical dependence of the mean and standard deviation of ADC values on signal-to-noise ratio (SNR) was derived and com-
pared to measured values in porous phantoms and the lungs of human subjects using diffusion-weighted hyperpolarized helium-3 MRI.
For SNR values below 15, mean ADC values were highly SNR-dependent due to a combination of noise and choice of noise threshold-
ing. Above SNR values of 15 and for mean ADC values within ranges relevant for evaluating lung disease (<0.6 cm2/s), the mean ADC
was largely independent of SNR. The standard deviation, by contrast, was highly dependent on SNR over a much larger range, but this
dependence was well predicted by theory, suggesting the histogram of ADC values might be corrected for these stochastic processes to
more accurately evaluate disease using restricted diffusion measures in the lungs.
� 2007 Published by Elsevier Inc.
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1. Introduction

In diffusion-weighted MRI, a measurement of the
apparent diffusion coefficient (ADC) can be obtained by
doing a pulsed gradient spin echo experiment and assuming
a mono-exponential model [1]. ADC can depend on spatial
and time-dependent factors due to tissue structures that
restrict diffusion regionally [2]. The ADC for hyperpolar-
ized (HP) helium-3 MRI in the lung has shown the poten-
tial to be a useful and reproducible [3,4] measurement in
the diagnosis of obstructive lung disorders such as emphy-
sema because it can be sensitive to changes in alveolar
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structures [5]. Specific to lung, ADC measures allow the
detection of emphysematous tissue changes before the
onset of other observable symptoms [6,7]. The current
diagnostic standard is spirometry, which has been shown
to correlate with ADC measurements [8] and high resolu-
tion CT [9]. The advantage of ADC over spirometry is
the ability to do quantitative regional analysis [10]. Emphy-
sema is a heterogeneous disease [9,11] and ADC maps can
provide a means to evaluate regional severity for guiding
surgical interventions [12]. Moreover, preliminary results
suggest that ADC metrics may be more sensitive than CT
densitometry [11,13,14].

However, ADC measures of the gas diffusion in the lung
are known to be biased under conditions of low signal-to-
noise ratio (SNR) [3,4]. Insufficient SNR can lead to spuri-
ously low mean ADC values and high standard deviation
(SD). It would be advantageous to minimize this depen-
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dence by appropriate thresholding or to know a priori the
minimum SNR required to obtain an accurate measure-
ment of the mean ADC. Similarly it may be of value to ret-
rospectively isolate stochastic variation from true
structural variation to capture SD measurements that accu-
rately reflect deterministic structural variations, rather than
stochastic processes.

One approach to reduce the SNR-dependent bias in
ADC measures is to apply a fixed noise threshold to both
the diffusion-weighted and -unweighted images [15]. In
the thresholding technique of Salerno et al. [8,15], approx-
imately 90% of the pixels containing signal are kept at the
2.5r threshold. Therefore, the threshold is set to 2.5r,
where r is the standard deviation of the statistically inde-
pendent and presumably equivalent noise levels in the in-
phase and quadrature channels. Because the measured
noise is therefore the magnitude of an originally complex
noise process, the measured noise background, rM, has
been shown to be related to r by r2

M ¼ ð2� p=2Þr2

[16,17]. However, Morbach et al. [4] used two different
noise thresholds, a milder threshold in the diffusion-weight-
ed relative to the unweighted image in recognition that vox-
els with high ADC values might still be valid measurements
that fall near rM.

The purpose of the present work is two-fold. First, to
rigorously present the dependence of ADC measures on
SNR for the commonly used mono-exponential decay
model, and, second, determine an appropriate minimum
SNR requirement for the accurate calculation of mean
ADC values from images derived from diffusion-weighted
HP gas data in the lungs.

2. Theory

2.1. ADC vs. SNR

For a mono-exponential model [11], an ADC map can
be calculated on a voxel-by-voxel basis from two images,
one diffusion-weighted with signal S1 and one unweighted
with signal S0. For HP diffusion-weighted MRI, the
mono-exponential model is routinely applied because two
image sets can usually be obtained in a breath-hold. Using
these methods, the ADC map is computed for each voxel
according to,

ADC ¼ 1

b
� ln S0

S1

� �
; ð1Þ

where b is a parameter that depends on the timing and
amplitude of the diffusion weighting gradients. It is reason-
able to assume the same noise level, r, in the weighted and
unweighted images since the noise processes are dominated
by factors unrelated to the diffusion weighting. It is further
assumed that the noise in these images is uncorrelated. Giv-
en these assumptions, we can redefine Eq. (1) in terms of
signal-value-to-noise ratio (SVNR) in each voxel of the
weighted and unweighted images, SVNR1 and SVNR0

respectively,
ADC ¼ 1

b
� ln SVNR0

SVNR1

� �
: ð2Þ

The SVNR is related to the estimated SNR by taking the
average SVNR for a given range or region in the image:

SNR ¼ 1

N

XN

i

SVNRi ¼
1

Nr

XN

i

S0i ¼
�S0

r
; ð3Þ

where N is the total number of pixels in the range. The
SVNR measure is a noise-normalized measure that is useful
in describing the effects of SNR on ADC measures. The
convention used in this paper is that the SVNR term refers
to the unweighted image, SVNR0, unless otherwise
denoted.

2.2. Stochastic analysis

An analytical expression for the ADC as a function of
SVNR is obtained by recognizing that the SVNR0 and
SVNR1 are Rician distributed random variables [16,18].
A Rician distributed random variable is formed by per-
forming a magnitude operation on two independent Gauss-
ian distributed random variables. In MRI, the noise in a
magnitude image, therefore, is Rician when the constituent
noise in the real and imaginary channels is Gaussian [17].
To determine the probability distribution function (PDF)
for the measured ADC we rewrite Eq. (2) and define two
random variables RV1 and RV2,

ADC ¼ ln SVNR0

b
� ln SVNR1

b
� RV1 þRV2; ð4aÞ

RV1 �
ln SVNR0

b
; ð4bÞ

RV2 �
� ln SVNR1

b
: ð4cÞ

Since the PDFs of SVNR0 and SVNR1 are known we use
the functional dependence of RV1 and RV2 on SVNR0

and SVNR1 given by Eqs. (4b and c) to determine the
PDFs of RV1 and RV2. Using the theory of random vari-
ables the functional dependence of the ADC is therefore:

P ADCðADCÞ ¼ P RV1
ðRV1Þ � P RV2

ðRV2Þ; ð5Þ

where ‘*’ denotes the convolution operator. Here the
PDF is denoted by ‘P’ with a subscript to identify the
random variable. A more detailed derivation is given in
Appendix A.

2.3. Standard deviation of ADC vs. SNR

Moreover, the theoretical dependence of the standard
deviation of the ADC, rADC, is shown to be,

rADC ¼
1

b
� 1

SVNR0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2�b�ADC

p
; ð6Þ

in Appendix Eqs. (A9)–(A12), where again the noise is as-
sumed to be uncorrelated in the weighted and unweighted
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images. Experimental evidence for the validity of Eq. (6)
will be provided in Section 4.

3. Methods

3.1. Monte carlo simulation

A 128-element vector, Ai, was assigned 128 equally
spaced initial signal values from 10 to 750 and used to cre-
ate corresponding vectors, Bi, representing the diffusion-
weighted signal, related by,

Bi ¼ Ai � exp ð�b �ADCÞ: ð7Þ
A fixed b-value of 1.6 s/cm2, and nominal values of ADC
ranging from 0.2 to 1.0 cm2/s were used. Vectors A0i and
B0i were formed by adding zero mean Gaussian noise
(r = 10) to Ai and Bi respectively. ADC values were then
calculated by rearranging Eq. (7) and using the primed vec-
tors according to,

ADC ¼ 1

b
� ln A0i

B0i

����
����: ð8Þ

This process was repeated 400 times to obtain sufficient sta-
tistics. The resulting data points were binned according to
SVNR and averaged, resulting in a mean ADC vs. SVNR
curve. Comparisons were done using thresholding at 0, 2.5,
5 and 7.5 times r.

3.2. Phantom construction

The above theory was validated in phantom studies.
Two phantoms were constructed from 5 cm inner diameter
PVC pipe sealed at each end with end-caps. One end-cap
on each phantom had a hole fitted with 1/800-inner-diameter
Tygon tube (US Plastic Corp., Lima, OH, USA) to allow
evacuation and filling. One phantom contained porous
polyurethane foam (density = 48 mg/cc) resulting in a
180 cc net volume. Pore size in the foam was estimated
by measuring the diameter of 20 pores from a digital
scanner image. The average pore size was 270 ± 60 lm.
The free diffusion phantom was vacant with a volume of
110 cc.

3.3. HP gas production

HP 3He gas was polarized using spin-exchange optical
pumping [19] to polarize 3He to 30–40%. The phantom
and Tedlar gas sample bags (Jensen Inert Inc., Coral
Springs, FL, USA) were evacuated and purged with nitro-
gen several times before filling with 3He to 1 atm. For
phantom studies the 3He was drawn from the polarizing
unit directly into the phantom via a 1/800-diameter Tygon
tube. For human studies a ‘dose’ of HP 3He was prepared
by drawing 3He into the gas sample bag from the polarizing
unit and mixing with pure N2 until the concentration of
hyperpolarized nuclei was 4.5 mM at a total volume of
15% of the subject’s total lung volume.
3.4. Magnetic resonance imaging

All experiments were carried out with a 2D axial diffu-
sion weighted scan with a b-value of 1.6 s/cm2 on a 1.5 T
MR scanner with broadband capabilities (Signa LX, GE
Healthcare, Milwaukee, WI). As recent work has shown,
the choice of b-value can be optimized depending on the
expected SNR and ADC in the experiment [20]. Here, the
particular b-value was chosen to preserve SNR in the diffu-
sion-weighted image over the range of ADC values expect-
ed in healthy and diseased human parenchyma (0.1–
0.5 cm2/s). To simplify the present investigation and to
address the method most commonly used in the literature
we assume a mono-exponential model. The diffusion
encoding gradient was perpendicular to the slice. A chest
coil (IGC-InVivo Research, Milwaukee, WI) tuned to the
3He resonant frequency was used to transmit and receive.
Phantom imaging was carried out using a fast-GRE
sequence, with a 31.25 kHz readout bandwidth, 64 · 64
image matrix, 1 slice, �4 cm slice thickness, TR/TE of
7 ms/3.6 ms and flip angle of �7�. A large axial slice was
used because the phantoms were symmetric along the B0

field. A series of images was obtained without changing
the gas by allowing RF saturation to further degrade the
SNR at each subsequent image. Experimental results were
obtained in 19 human subjects (Mean age = 45.6 ± 4 yrs,
range = 23–73 yrs, 10 males, 9 females). For the human
studies imaging parameters included 31.25 kHz readout
bandwidth, 128 · 80 image matrix, 10 slices, 1.5 cm slice
thickness, TR/TE of 8.4 ms/4.5 ms and flip angle of �7�.
Flip angles were calibrated using a pulse-acquire sequence.
The peak of the Fourier transform of the free induction
decay signals obtained from the phantoms were fit to the
model:

Sða; nÞ ¼ sin a cos an�1; ð9Þ
where n is an index of the number of excitation rf-pulses
applied and flip angle, a.

3.5. Data analysis

The true noise standard deviation, r, was determined by
measuring the standard deviation in an ROI in the noise
field, rM, and correcting it via r2

M ¼ ð2� p=2Þr2. The
SVNR was then calculated by dividing the signal in each
pixel by r as for the simulations. ADC values were calcu-
lated using Eq. (1) and their mean and standard deviation
were obtained by binning the data according to the mea-
sured SVNR in the unweighted image and calculating the
mean and standard deviation within each bin. The bin
width used was ±8.5 SVNR values for phantoms and
±1.75 SVNR values for human subjects, providing 20 bins
over the available range of SNR values. A routine for
performing these calculations for the ADC values was
implemented using MATLAB (MathWorks, Natick,
MA). All image processing and data analysis was per-
formed on the magnitude images.
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4. Results

4.1. Analytical results

In Fig. 1, the functional dependence of the mean ADC
values on SNR are depicted for true mean ADC values
of 0.2 and 0.8 cm2/s—typical values expected in normal
human volunteers in lung parenchyma and the airways
respectively. From the numerical evaluation of Eq. (5),
an error of less than 0.2% in the mean ADC is predicted
for ADC values less than 0.6 cm2/s at an SNR above 15
(Table 1). Fig. 1 shows graphically the functional depen-
dence of the probability distribution of the ADC for SNRs
of 6 and 15 in the unweighted image. At a given expected
ADC value the distribution becomes increasingly dispersed
and skewed towards lower values as the intrinsic SNR of
the experiment drops. For, lower ADC values, i.e.
increased level of restriction in our model, the probability
distribution is less dependent on SNR because the signal
loss due to diffusion is reduced by the higher restriction
in the airspaces. Smaller signal reduction results in less data
below the noise level.
4.2. Simulations

For the results of the Monte Carlo simulation, the
ensemble average of all voxels with similar SVNR is an
Fig. 1. Probability distribution of the ADC values for diffusion coeffi-
cients of 0.2 cm2/s and 0.8 cm2/s and at SNR values of 6 and 15 in the
unweighted image. The decrease in mean ADC and the increase in
dispersion with decreased SNR is qualitatively apparent.

Table 1
Percent error in Mean ADC for specific SNR values

Mean ADC cm2/s SNR0

5 (%) 10 (%) 15 (%) 20 (%)

0.2 0.7 0.05 0.016
0.4 1.7 0.12 0.092 0.075
0.6 4.6 0.38 0.12 0.025
0.8 10 1.4 0.27 0.13
estimate of the SNR for voxels in the given signal range,
Eq. (3). Therefore, given sufficient number of samples at
each SVNR, the mean ADC can be estimated directly from
the ADC vs. SVNR plot (Fig. 2) and compared to the the-
oretical dependences predicted in Fig. 1. In Fig. 2A the
ADC vs. SVNR dependence (yellow line) for the fixed
threshold value of 2.5r is shown superimposed on all
SVNR values. The thresholding process affects ADC at
lower SVNR by rejecting the blue data points that corre-
spond to values in the upper tail of the ADC probability
distributions shown in Fig. 1. The green lines indicate the
threshold separating the voxels retained (red) for the voxels
rejected (blue).

The stochastic dependence of the standard deviation of
the ADC is shown in Fig. 2B. The theoretical values given
by Eq. (6) are represented as green error bars and appear
adjacent to the corresponding measured errors shown in
yellow. The green error bars are offset to the right to
aid visualization. Mean values of each bin are indicated
by the red points connected by the red line. Because the
simulation is governed entirely by stochastic processes
the results agree quite well, whereas in human subjects
the actual standard deviation will exceed the predicted
value due to physiological and structural sources of
variation.

The measured mean ADC plotted vs. SVNR are shown
in Fig. 3A–D for different threshold values and ADC val-
Fig. 2. ADC simulation data shown in (A) with Eq. (2) plotted in green
for a threshold value of 2.5r. Points in blue are rejected, leaving points in
red for ROI based calculations. The running mean of the retained data
points is plotted in yellow. The standard deviation of the unthresholded
distribution is shown (B) with yellow bars compared to the theoretical
standard deviation shown in green bars. At higher SVNR values the
measured values overlap the theoretical values as expected.
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ues. When no threshold is applied (Fig. 3A), there is an ini-
tial overshoot resulting from spuriously high ADC values
calculated from very low SNR1 voxels in the weighted
image. While thresholding eliminates these spurious values
(Fig. 3B–D), the SNR dependence due to the relationship
in Eq. (2) leads to an underestimation of the mean ADC,
even for a relatively mild noise threshold of 2.5 times r.
Note that underestimation is more pronounced for higher
values of ADC and for higher noise threshold values.

4.3. Experiments

A typical ADC image and histogram for a 60 year old
male with a 35 pack year smoking history is shown in
Fig. 4. A ventilation defect (white arrow) on the left side
of the image is clearly seen. Fig. 5 shows a typical SNR
dependence of the ADC for human lungs, in this specific
case a 60 year old male with a 40 pack year smoking histo-
ry. The mean ADC values (solid black line) for SNR bins
at a threshold of 2.5r (dotted line) are shown. Note that
the mean ADC drops rapidly for SNR0 < 10, similar to
that observed for the simulation studies. This rapid falloff
in the mean was observed to occur at an average
SNR0 = 10 ± 1 for the 19 human subjects and did not vary
significantly with disease.
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Fig. 3. ADC vs. SNR behavior for simulation experiments (A–D). Increasing t
the threshold increases, the mean ADC is increasingly biased towards lower v
Fig. 6A–C shows the dependence of the mean ADC and
rADC on SNR0 in the free diffusion phantom, the foam
phantom and human lung. The dependence of rADC on
SNR0 in the free diffusion phantom (Fig. 6A) agrees quite
well with the stochastic dependence predicted by Eq. (6).
However in the foam phantom (Fig. 6B) and human data
(Fig. 6C), SDADC is consistently larger than the value pre-
dicted by Eq. (6). This suggests that the source of the addi-
tional variance in the foam and human lung data is likely
due to physical variation in the underlying microstructure.
5. Discussion

Theoretical and experimental studies demonstrate the
dependence of ADC measures on SNR for HP DW-MRI
in the lung. The observed ADC vs. SNR behavior has been
shown to be a direct result of thresholding and noise prop-
agation due to the form of Eq. (1) using simulation and
phantom studies. At a given SNR, the ADC values form
a distribution about the mean but when the SNR is insuf-
ficient, the thresholding process significantly truncates the
upper tail of this distribution, driving the mean below its
true value. At sufficiently high SNR the ADC is indepen-
dent of SNR. According to theory and experiment, the
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image in (A).

Fig. 5. ADC values measured in a human subject (gray) are shown with
the threshold line indicated (dotted line). The mean ADC is calculated for
points to the right of the curve within discrete SVNR bins (data points on
solid line).

Fig. 6. ADC vs. SVNR plots for (A) the free diffusion phantom, (B) the
foam phantom, and (C) human lung. The theoretical standard deviation is
in agreement with the measured standard deviation for the free diffusion
phantom whereas it underestimates the standard deviation in the foam
phantom and human lung.
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mean ADC is largely independent of SNR for SNR > 15
for the range of ADC values observed in human lung
attesting to the sensitivity of this measure to detect early
changes in lung microstructure [13,14,21]. In volunteer
and patient studies the mean ADC values were found to
be consistent with this cutoff, decreasing rapidly for SNR
values near or below 10. This underestimation of the mean
ADC due to values lower than this SNR can be eliminated
by imposing a threshold on the unweighted image only.
Although this method includes points with very low signal
in the weighted image, the source of low signal in these vox-
els may be attributed to high diffusion or high noise. Since
these two effects are indistinguishable it may be acceptable
to include these points for analysis based on their high
unweighted signal alone.

The dependence of rADC on SNR in the simulation and
in the free diffusion phantom was shown to obey Eq. (6) for
all but the very lowest SNR values, implying the variation
of the ADC measurements is purely stochastic as would be
expected when there is no underlying structure to restrict
diffusion. The deviations between measurement and theory
for extremely low SNR in the free diffusion case are likely
due to averaging over a finite bin width where the SNR
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dependence is changing rapidly. In contrast, the SNR
dependence over the entire range of SNR values in the
foam phantom and in human lung was not fully accounted
for by stochastic considerations. The remaining variation is
therefore likely due to structure or, in the case of the
human subject, structure and physiologic noise. The near
constant value of the rADC expected for the homogeneous
foam phantom, in particular, suggests that the stochastic
dependence may be removed resulting in a ‘corrected’ mea-
sure of standard deviation that may be a stronger metric of
structural heterogeneity.

This work underscores the importance of SNR consider-
ations in the interpretation of ADC measurements in the
lungs using HP gases. Given that there is often regional
overlap between sites of airway obstruction and micro-
structural changes associated with disease, the SNR in crit-
ical regions may be impaired by poor ventilation which can
affect the accuracy of both the mean and standard devia-
tion of the measured ADC. Moreover, the impact of
thresholding on these regions is to drive down ADC values,
potentially underestimating the severity of disease. In such
cases, thresholding on the unweighted image only may be
preferable.

Recent work has advocated multi-exponential models
and diffusion tensor measurements for regional evaluation
of lung structure [4,5,22,23]. These models will require
thresholding that will induce similar SNR-dependence to
that presented in this work for the mono-exponential mod-
el. Moreover, the mono-exponential model has been shown
to capture key features of lung disease at the alveolar level
and is technically less demanding for the acquisition of
regional information about lung structure within the con-
straints of a short breath-hold. Additionally, the mean
ADC from the mono-exponential model remains the most
validated measure for evaluation of emphysema [4,8,11,13].
However, rADC is an inconsistent measure of structural
heterogeneity in these studies most likely due to the SNR
dependence of this measure demonstrated in the present
work. Consequently, there is an important need for under-
standing the underlying sensitivity of mean ADC and rADC

to image SNR and to what extent these measures represent
stochastic vs. structural features of disease. Although the
use of foam phantoms to simulate structural variation is
certainly not a perfect model of the lungs, these phantoms
are useful tools to help separate stochastic from structural
features of disease that can guide interpretation of lung
data. Moreover, similar theoretical development can help
guide how to best apply more complicated multi-exponen-
tial models in future studies, and the present work provides
a benchmark for the relative performance and sensitivity of
these models to noise processes.

In summary, the SNR dependence of ADC measures as
applied to diffusion-weighted imaging of the lung was eval-
uated in simulations and phantom studies. The expected
error in mean ADC due to stochastic fluctuations was pre-
dicted to be less than 0.2% for mean ADC measurements
below 0.6 cm2/s and for SNR > 15. rADC was more strong-
ly SNR-dependent, but phantom studies suggest the sto-
chastic component may be removed to better reflect
variation in microstructure. To obtain accurate measure-
ments of ADC, we recommend a threshold of 15 on the
SVNR in the unweighted image. This is equivalent to a
15r threshold on the unweighted signal only and is there-
fore more selective than the previously considered thresh-
old of 2.5r on both the weighted and unweighted signals.
Aside from the higher threshold, the present method differs
from the previous approach in that voxels are rejected
based only on their unweighted signal value. In the previ-
ous approach, voxels were more likely to be rejected based
on the value of their weighted signal, causing valid mea-
sures of elevated ADC to be rejected.

Appendix A

A.1. Probability density function derivation

To obtain the probability density function (PDF) of the
ADC we treat the ADC as a function of two random vari-
ables, SVNR0 and SVNR1, with Rician PDFs. If A0 and A1

are the noise-free signals in the unweighted and weighted
images respectively the PDFs for SVNR0 and SVNR1

can be expressed as,

P SVNR0
ðSVNR0Þ ¼

SVNR0

r
� e�

1
2ðSVNR2

0þ
A2

0
r2 Þ

� I0

SVNR0 �A0

r

� �
; ðA1Þ

P SVNR1
ðSVNR1Þ ¼

SVNR1

r
� e�

1
2ðSVNR2

1þ
A2

1
r2 Þ

� I0

SVNR1 �A1

r

� �
; ðA2Þ

where I0 is the zeroth order Bessel function of the first kind
and r is the standard deviation of the noise in each of the I
and Q channels. For clarity the derivation is done in two
steps. First we define two new random variables RV1 and
RV2 in Eqs. (4a–c) and obtain their PDFs. If Y is a random
variable depending on another random variable, X, with
known PDF, Px(x), then the PDF of Y, Py(y), can be ob-
tained via [24],

Y ¼ f ðX Þ ðA3Þ

P yðyÞ ¼
P xðxÞ
g0ðxÞ ; ðA4Þ

where g 0(x) denotes the derivative of g with respect to x.
Using the rule given by Eqs. (A3, A4) the PDFs for RV1

and RV2 are,

P RV1
ðRV1Þ ¼ b � eRV1�b � P SVNR0

ðSVNR0Þ � ðeRV1�bÞ ðA5Þ
P RV2
ðRV2Þ ¼ b � e�RV2�b � P SVNR1

ðSVNR1Þ � ðe�RV2�bÞ: ðA6Þ

If a random variable, Z, can be expressed as the sum of two
random variables, X and Y, with known PDFs, Px(x) and
Py(y), the PDF of Z, Pz(z), can be written as [24],
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P zðzÞ ¼ P xðxÞ � P yðyÞ: ðA7Þ
Applying Eq. (A7) to Eq. (4a) we obtain the result given by
Eq. (5),

P ADCðADCÞ ¼ P RV1
ðRV1Þ � P RV2

ðRV2Þ: ðA8Þ
A.2. Standard deviation derivation

To derive the standard deviation of the ADC, rADC, we
start with Eq. (1) from Section 2 and again assume the
noise in the unweighted, r0, and weighted, r1, images is
uncorrelated and that the b-value is known with negligible
error from the gradient waveforms. Then,

r2
ADC ¼

oADC

oS0

� �2

r2 þ oADC

oS1

� �2

r2; ðA9Þ

where S0 and S1 are the unweighted and weighted signal
respectively.

Performing the differentiation of Eq. (1) and assuming
the same noise magnitude, r1 = r2 = r, one obtains:

r2
ADC ¼

r2

b
1

S2
0

þ 1

S2
1

 !
: ðA10Þ

By substituting the expression for S1 derived from algebraic
rearrangement of Eq. (1), one obtains:

r2
ADC ¼

r2

b
1

S2
0

þ 1

S2
0

e2�b�ADC

 !
: ðA11Þ

Now, by substitution of our definition of the signal-value-
to-noise ratio of the unweighted image, SVNR0, and taking
the square root, we obtain the result given by Eq. (6):

rADC ¼
1

b
� 1

SVNR0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2�b�ADC

p
: ðA12Þ
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